38 research outputs found

    Spectroscopic and photometric studies of low-metallicity star-forming dwarf galaxies. III. SBS 1415+437

    Full text link
    We present a detailed optical spectroscopic and B,V,I,Halpha photometric study of the metal-deficient cometary blue compact dwarf (BCD) galaxy SBS 1415+437. We derive an oxygen abundance 12+log(O/H)=7.61+/-0.01 and 7.62+/-0.03 (Z =Zsun/20) in the two brightest H II regions, among the lowest in BCDs. The helium mass fractions in these regions are Y=0.246+/-0.003 and 0.243+/-0.010. Four techniques based on the equivalent widths of the hydrogen emission and absorption lines, the spectral energy distribution and the colours of the galaxy are used to put constraints on the age of the stellar population in the low-surface-brightness (LSB) component of the galaxy, assuming two limiting cases of star formation (SF), the case of an instantaneous burst and that of a continuous SF with a constant or a variable star formation rate (SFR). The spectroscopic and photometric data for different regions of the LSB component are well reproduced by a young stellar population with an age t<250 Myr, assuming a small extinction in the range A(V)= 0-0.6 mag. Assuming no extinction, we find that the upper limit for the mass of the old stellar population, formed between 2.5 Gyr and 10 Gyr, is not greater than ~(1/20 - 1) of that of the stellar population formed during the last ~250 Myr. Depending on the region considered, this also implies that the SFR in the most recent SF period must be 20 to 1000 times greater than the SFR at ages > 2.5 Gyr. We compare the photometric and spectroscopic properties of SBS 1415+437 with those of a sample of 26 low-metallicity dwarf irregular and BCD galaxies. We show that there is a clear trend for the stellar LSB component of lower-metallicity galaxies to be bluer. This trend cannot be explained only by metallicity effects. There must be also a change in the age of the stellar populations.Comment: 16 pages, 9 figures, Accepted for publication in A&

    The primordial Helium-4 abundance determination: systematic effects

    Get PDF
    By extrapolating to O/H = N/H = 0 the empirical correlations Y-O/H and Y-N/H defined by a relatively large sample of ~ 45 Blue Compact Dwarfs (BCDs), we have obtained a primordial 4Helium mass fraction Yp= 0.2443+/-0.0015 with dY/dZ = 2.4+/-1.0. This result is in excellent agreement with the average Yp= 0.2452+/-0.0015 determined in the two most metal-deficient BCDs known, I Zw 18 (Zsun/50) and SBS 0335-052 (Zsun/41), where the correction for He production is smallest. The quoted error (1sigma) of < 1% is statistical and does not include systematic effects. We examine various systematic effects including collisional excitation of Hydrogen lines, ionization structure and temperature fluctuation effects, and underlying stellar HeI absorption, and conclude that combining all systematic effects, our Yp may be underestimated by ~ 2-4%. Taken at face value, our Yp implies a baryon-to-photon number ratio eta = 4.7x10^-10 and a baryon mass fraction Omega_b h^2_{100} = 0.017+/-0.005 (2sigma), consistent with the values obtained from deuterium and Cosmic Microwave Background measurements. Correcting Yp upward by 2-4% would make the agreement even better.Comment: 12 pages, 5 PS figures, to appear in "Matter in the Universe", ed P. Jetzer, K. Pretzl and R. von Steiger, Kluwer, Dordrecht (2002

    Computability of simple games: A characterization and application to the core

    Get PDF
    The class of algorithmically computable simple games (i) includes the class of games that have finite carriers and (ii) is included in the class of games that have finite winning coalitions. This paper characterizes computable games, strengthens the earlier result that computable games violate anonymity, and gives examples showing that the above inclusions are strict. It also extends Nakamura's theorem about the nonemptyness of the core and shows that computable games have a finite Nakamura number, implying that the number of alternatives that the players can deal with rationally is restricted.Comment: 35 pages; To appear in Journal of Mathematical Economics; Appendix added, Propositions, Remarks, etc. are renumbere

    Pairwise dwarf galaxy formation and galaxy downsizing: some clues from extremely metal-poor Blue Compact Dwarf galaxies

    Full text link
    Some of the extremely metal-poor Blue Compact Dwarf galaxies (XBCDs) in the nearby universe form galaxy pairs with remarkably similar properties. This fact points to an intriguing degree of synchronicity in the formation history of these binary dwarf galaxies and raises the question as to whether some of them form and co-evolve pairwise (or in loose galaxy groups), experiencing recurrent mild interactions and minor tidally induced star formation episodes throughout their evolution. We argue that this hypothesis offers a promising conceptual framework for the exploration of the retarded previous evolution and recent dominant formation phase of XBCDs.Comment: To appear in the proceedings of the JENAM 2010 Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution" (Lisbon, 9-10 September 2010), P. Papaderos, S. Recchi, G. Hensler (eds.), Springer Verlag (2011), in pres

    Determining the initial helium abundance of the Sun

    Full text link
    We determine the dependence of the initial helium abundance and the present-day helium abundance in the convective envelope of solar models (\yim and \ysm respectively) on the parameters that are used to construct the models. We do so by using reference standard solar models to compute the power-law coefficients of the dependence of \yim and \ysm on the input parameters. We use these dependencies to determine the correlation between \yim and \ysm and use this correlation to eliminate uncertainties in \yim from all solar model input parameters except the microscopic diffusion rate. We find an expression for \yim that depends only on \ysm and the diffusion rate. By adopting the helioseismic determination of solar surface helium abundance, \ysms= 0.2485\pm0.0035, and an uncertainty of 20% for the diffusion rate, we find that the initial solar helium abundance, \yims, is 0.278±0.0060.278 \pm 0.006 independently of the reference standard solar models (and particularly on adopted the solar abundances) used in the derivation of the correlation between \yim and \ysm. When non-standard solar models with extra mixing are used, then we derive \yims = 0.273 \pm 0.006. In both cases, the derived \yims value is higher than that directly derived from solar model calibrations when the low metalicity solar abundances (e.g. by Asplund et al.) are adopted in the models.Comment: 18 pages, including 3 figures and 2 tables. Accepted for publication in Ap

    Unveiling the nature of the "Green Pea" galaxies

    Full text link
    We review recent results on the oxygen and nitrogen chemical abundances in extremely compact, low-mass starburst galaxies at redshifts between 0.1-0.3 recently named to as "Green Pea" galaxies. These galaxies are genuine metal-poor galaxies (∌\sim one fifth solar) with N/O ratios unusually high for galaxies of the same metallicity. In combination with their known general properties, i.e., size, stellar mass and star-formation rate, these findings suggest that these objects could be experiencing a short and extreme phase in their evolution. The possible action of both recent and massive inflow of gas, as well as stellar feedback mechanisms are discussed here as main drivers of the starburst activity and their oxygen and nitrogen abundances.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon, September 2010, Springer Verlag, in pres

    Revisiting Delta Y/Delta Z from multiple main sequences in Globular Clusters: insight from nearby stars

    Full text link
    For nearby K dwarfs, the broadening of the observed Main Sequence at low metallicities is much narrower than expected from isochrones with the standard helium-to-metal enrichment ratio DY/DZ=2. Though the latter value fits well the Main Sequence around solar metallicity, and agrees with independent measurements from HII regions as well as with theoretical stellar yields and chemical evolution models, a much higher DY/DZ~10 is necessary to reproduce the broadening observed for nearby subdwarfs. This result resembles, on a milder scale, the very high DY/DZ estimated from the multiple Main Sequences in Omega Cen and NGC 2808. Although not "inverted" as in omega Cen, where the metal-rich Main Sequence is bluer than the metal-poor one, the broadening observed for nearby subdwarfs is much narrower than stellar models predict for a standard helium content. We use this empirical evidence to argue that a revision of lower Main Sequence stellar models, suggested from nearby stars, could significantly reduce the helium content inferred for the subpopulations of those globular clusters. A simple formula based on empirically calibrated homology relations is constructed, for an alternative estimate of DY/DZ in multiple main sequences. We find that, under the most favourable assumptions, the estimated helium content for the enriched populations could decrease from Y~0.4 to as low as Y~0.3.Comment: 15 pages, 12 figures, in press on MNRA

    Star forming dwarf galaxies

    Full text link
    Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon, September 2010, Springer Verlag, in pres

    Bino Dark Matter and Big Bang Nucleosynthesis in the Constrained E6SSM with Massless Inert Singlinos

    Full text link
    We discuss a new variant of the E6 inspired supersymmetric standard model (E6SSM) in which the two inert singlinos are exactly massless and the dark matter candidate has a dominant bino component. A successful relic density is achieved via a novel mechanism in which the bino scatters inelastically into heavier inert Higgsinos during the time of thermal freeze-out. The two massless inert singlinos contribute to the effective number of neutrino species at the time of Big Bang Nucleosynthesis, where the precise contribution depends on the mass of the Z' which keeps them in equilibrium. For example for mZ' > 1300 GeV we find Neff \approx 3.2, where the smallness of the additional contribution is due to entropy dilution. We study a few benchmark points in the constrained E6SSM with massless inert singlinos to illustrate this new scenario.Comment: 24 pages, revised for publication in JHE

    Searching for sterile neutrinos in ice

    Full text link
    Oscillation interpretation of the results from the LSND, MiniBooNE and some other experiments requires existence of sterile neutrino with mass ∌1\sim 1 eV and mixing with the active neutrinos ∣UÎŒ0∣2∌(0.02−0.04)|U_{\mu 0}|^2 \sim (0.02 - 0.04). It has been realized some time ago that existence of such a neutrino affects significantly the fluxes of atmospheric neutrinos in the TeV range which can be tested by the IceCube Neutrino Observatory. In view of the first IceCube data release we have revisited the oscillations of high energy atmospheric neutrinos in the presence of one sterile neutrino. Properties of the oscillation probabilities are studied in details for various mixing schemes both analytically and numerically. The energy spectra and angular distributions of the ΜΌ−\nu_\mu-events have been computed for the simplest Îœs−\nu_s-mass, and Îœs−ΜΌ\nu_s - \nu_\mu mixing schemes and confronted with the IceCube data. An illustrative statistical analysis of the present data shows that in the Îœs−\nu_s-mass mixing case the sterile neutrinos with parameters required by LSND/MiniBooNE can be excluded at about 3σ3\sigma level. The Îœs−ΜΌ\nu_s- \nu_\mu mixing scheme, however, can not be ruled out with currently available IceCube data.Comment: 41 pages, 16 figures. Accepted for publication in JHEP. Minor changes from the previous versio
    corecore